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Smith AC, Wirth S, Suzuki WA, Brown EN. Bayesian analysis of
interleaved learning and response bias in behavioral experiments. J
Neurophysiol 97: 2516–2524, 2007. First published December 20,
2006; doi:10.1152/jn.00946.2006. Accurate characterizations of be-
havior during learning experiments are essential for understanding the
neural bases of learning. Whereas learning experiments often give
subjects multiple tasks to learn simultaneously, most analyze subject
performance separately on each individual task. This analysis strategy
ignores the true interleaved presentation order of the tasks and cannot
distinguish learning behavior from response preferences that may
represent a subject’s biases or strategies. We present a Bayesian
analysis of a state-space model for characterizing simultaneous learn-
ing of multiple tasks and for assessing behavioral biases in learning
experiments with interleaved task presentations. Under the Bayesian
analysis the posterior probability densities of the model parameters
and the learning state are computed using Monte Carlo Markov Chain
methods. Measures of learning, including the learning curve, the ideal
observer curve, and the learning trial translate directly from our
previous likelihood-based state-space model analyses. We compare
the Bayesian and current likelihood–based approaches in the analysis
of a simulated conditioned T-maze task and of an actual object–place
association task. Modeling the interleaved learning feature of the
experiments along with the animal’s response sequences allows us to
disambiguate actual learning from response biases. The implementa-
tion of the Bayesian analysis using the WinBUGS software provides
an efficient way to test different models without developing a new
algorithm for each model. The new state-space model and the Bayes-
ian estimation procedure suggest an improved, computationally effi-
cient approach for accurately characterizing learning in behavioral
experiments.

I N T R O D U C T I O N

Accurate characterizations of behavior in learning exper-
iments are essential for understanding how we acquire and
retain new information. In typical behavioral learning ex-
periments subjects are presented with two or more tasks to
solve simultaneously. The level of difficulty of the experi-
ment can be controlled by the number of task presented. A
common paradigm is to present the tasks to the subject by
interleaving them in random order (Jog at al. 1999; Law et
al. 2005; Paton et al. 2006; Williams and Eskandar 2006;
Wirth et al. 2003). The most frequently recorded behavioral
data are the trial-by-trial sequences of correct and incorrect
responses. Whereas learning experiments often give a sub-

ject multiple tasks to learn simultaneously, analyses of
learning behavior often characterize subject performance on
each individual task separately. This analysis strategy ig-
nores the interleaved presentation order of the tasks and
makes it difficult to distinguish performance changes as-
cribed to learning from performance changes that may be
associated with a bias or a strategy the subject has adopted.

A wide range of data analysis methods have been applied to
determine when learning occurs for a single task. Such meth-
ods include the consecutive correct response criterion (Stefani
et al. 2006), the change-point test (Gallistel et al. 2004; Paton
et al. 2006), and stochastic models applied to both binary data
(Smith et al. 2004, 2005; Wirth et al. 2003) and to reaction time
data (Dayan et al. 2000; Smith 1995; Yu and Dayan 2003).
Although complex stochastic models of learning multiple tasks
have been proposed (Busemeyer and Townsend 1993; Ditter-
ich 2006; Estes 1978; Luce et al. 1965; Ratcliff and Rounder
2000; Suppes 1959, 1990; Usher and McClelland 2001; Ver-
guts et al. 2002; Verhelst and Glas 1995), these models are not
used routinely by experimentalists in the analysis of binary
response data and are not capable of handling specific response
biases. There is new interest in stochastic models for data
analysis because of a need to relate behavioral measures of
learning to changes in neural activity (Gallistel et al. 2004;
Paton et al. 2006; Suzuki and Brown 2005; Wirth et al. 2003;
Wolbers and Büchel 2005; Yoshida and Ishii 2006). Of the
stochastic models being considered in current behavioral anal-
yses, the flexibility of state-space models makes them well
suited for characterizing interleaved learning experiments and
correcting for response biases.

By extending in two ways current likelihood–based state-
space models of learning (Smith et al. 2004, 2005), we present
an approach to analyzing a learning experiment in which the
tasks presented are interleaved and the subject may have a
behavioral bias. First, we augment the univariate state-space
model for learning a single task to a multivariate state-space
model that represents the cognitive states of the multiple tasks
and the cognitive state of the subject’s bias. Second, we
introduce a Bayesian approach using Monte Carlo Markov
Chain methods for estimating the model parameters and the
unobserved cognitive states. We illustrate our method in the
analysis of a simulated experiment of a rat executing an
alternating T-maze task with an initial left-turn bias and in the
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analysis of an actual learning experiment in which a monkey
executes an object–place association task (Wirth et al. 2005).

M E T H O D S

A state-space model for interleaved learning and bias

We assume that the learning experiment can be modeled using a
state-space framework (Durbin and Koopman 2001; Kitagawa and
Gersh 1996; Smith and Brown 2003; Smith et al. 2004, 2005). The
state-space model consists of two equations: a state equation and an
observation equation. We define a state equation that allows us to
disambiguate the subject’s cognitive state regarding each task being
learned from his/her possible response bias. Therefore in this analysis,
the state equation will define the temporal evolution of the cognitive
state of each task the subject is learning and the temporal evolution of
the subject’s response bias.

The observation equation defines how the observed data relate to
the unobservable cognitive state process for each task and the cogni-
tive state process for the subject’s response bias. The data we observe
in the interleaved learning experiment are the series of correct and
incorrect responses as a function of trial number for each of the tasks
the subject is learning. In addition, we observe the sequence of
specific responses on each trial. Used together in the state-space
analysis, the series of correct and incorrect responses and the series
responses can be used to distinguish learning of each task from a
response bias.

In this analysis, the learning state for each task will be defined as
the cognitive state corrected for the subject’s bias. As in our previous
learning analyses (Smith et al. 2004, 2005; Wirth et al. 2003), we
compute from the learning state process the learning curve that defines
the probability of a correct response as a function of trial number. We
define the learning curve as a function of the learning state process so
that an increase in the learning state process increases the probability
of a correct response and a decrease in the learning process decreases
the probability of a correct response.

For clarity, we present the state-space model in the context of a
simple conditioned T-maze experiment (Barnes et al. 2006; Jog et al.
1999). In this experiment, a rat is placed on the longest or start arm of
a T-shaped maze apparatus and is trained to associate an auditory cue
(i.e., either a high or low tone) with entering the left or right arm for
a food reward. The response data constitute whether the animal makes
a correct turn at a given trial. In this experiment the number of
possible tasks (associations) to be learned is two—that is, high tone
associated with a left turn and low tone associated with a right turn.
In a noninterleaved analysis of this experiment the responses would be
divided into two separate binary series corresponding to the initial
tone presentation and each series would be analyzed separately. For
our interleaved analysis, we make use of the additional information of
which direction the animal actually turned on a given trial. In this
example, we assume these are also binary data such that a one
indicates the animal turned left and a zero indicates the animal turned
right. If the presentation order of the two tasks is pseudorandom, the
cognitive state relating to bias will be near zero both when the animal
responds correctly and when the animal responds randomly. When the
animal exhibits a left (right) response bias, this state will be above
(below) zero and can be used to modify the assessment of learning
estimated from the binary incorrect/correct responses alone.

To define the observation model for an interleaved learning exper-
iment, we assume that J tasks (associations) are presented over K
trials. Let nk,j be 1 if the response on trial k is correct for task j and 0
otherwise, where j � 1, . . . , J and k � 1, . . . , K. Let nk,J�1 be a 1 if
the animal turns left on trial k and 0 if it turns right. Let nk �
{Ik,1nk,1, . . . , Ik,Jnk,J, nk,J�1} be the responses observed on trial k,
where Ik,j is the indicator function that is 1 if task j is presented at trial
k and 0 otherwise. We let N � {n1, . . . , nK} be the observed
responses from all K trials. We define pk,j as the probability of a

correct response on trial k to task j, pk,J�1 as the probability that the
animal chooses to turn left on trial k and we define pk � (pk,1, . . . ,
pk,J�1). It follows that the observation model for trial k is

Pr�nk�pk� � �pk,J�1�
nk,J�1�1 � pk,J�1�

1�nk,J�1 � �
j�1

J

Ik,j��pk,j�
nk,j�1 � pk,j�

1�nkj� (1)

To relate performance on trial k to performance on prior and
subsequent trials, we define a two-component state-space model—
one component describes the propensity of the animal to give a correct
response and the second component describes the propensity of the
animal to make a left turn as its response. Let xk,j be the subject’s
cognitive state about task j on trial k. We assume that the cognitive
state on trial k for task j is related to the cognitive state at trial k by the
Gaussian random-walk state-space model

xk,j � xk�1,j � �k,j (2)

where �k,j is Gaussian error with zero mean and variance �j
2 for j �

1, . . . , J. Let xk,J�1 be the subject’s cognitive state about choosing left
on trial k, which is related to the subject’s cognitive state about
choosing left on trial k � 1 by the Gaussian random-walk state-space
model

xk,J�1 � xk�1,J�1 � �k,J�1 (3)

where �k,J�1 is Gaussian error with zero mean and variance �J�1
2 . If

we let xk � (xk,1, xk,2, . . . , xk,J�1) and �k � (�k,1, �k,2, . . . , �k,J�1)
then we can express the two components of the state-space model
given in Eqs. 2 and 3 as the vector equation

xk � xk�1 � �k (4)

We take x � (x1, . . . , xK) to be the vector of cognitive states across
the entire experiment.

To relate the cognitive state model in Eq. 4 to the observation
model in Eq. 1, we define pk,j in terms of values of xk,j as

pk,j � �1 � exp�xk,j��
�1 exp�xk,j� (5)

for j � 1, . . . , J � 1. Expressing pk,j as a logistic function of xk,j

ensures that these probabilities are constrained to lie between zero
and one. As xk,j increases (decreases) to positive (negative) infinity
pk,j increases (decreases) to 1 (0). We note that if xk,J�1 � 0 then
pk,J�1 � 0.5 and the animal is equally likely to choose left or right. In
this case, there is no bias.

To determine the subject’s cognitive state regarding learning, we
must disambiguate the propensity to respond correct from the propen-
sity to respond in a biased manner. We accomplish this separation by
using the state-space model components and assuming that directional
bias has an additive effect on the cognitive state. Thus we define the
learning state as

zk,j � xk,j � xk,J�1 (6)

where the sign in front of xk,J�1 is positive (negative) for the low
(high) tone–right (left) turn reward trial.

A Bayesian analysis of the learning state-space model

We can express the unknown parameters in this model as � � (x0,
�1

2, . . . , �J�1
2 ), where x0 � (x0,1, . . . , x0,J�1) is the cognitive state of

the animal about the J tasks and turn propensity at the outset of the
task. In our previous state-space models of learning we used the
Expectation–Maximization algorithm to compute maximum-likeli-
hood estimates of � and the unobserved cognitive or learning state
process x (Smith et al. 2004, 2005; Wirth et al. 2003). Although a
similar approach would be possible here, we introduce instead a
Bayesian approach to computing � and x. The goal of the Bayesian
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analysis is to compute the posterior probability density of � and x,
defined from Bayes’ rule as

p��,x�N� �
p���p�x���p�N�x,��

p�N�
(7)

where p(�) is a prior probability density for � and p(x � �) is the joint
probability density of the cognitive state process defined by Eq. 4 as
follows

p�x��� � �
k�1

K

p�xk�xk�1,�� � �2	�����K/2

� exp��
1

2�
k�1

K

�xk � xk�1��
�1�xk � xk�1�� (8)

where � is a (J � 1) 	 (J � 1) diagonal matrix with the jth diagonal
element �j

2 for j � 1, . . . , J � 1 and p(N � x, �) is the joint probability
density or likelihood of the data defined from Eq. 1 as

p�N�x,�� � �
k�1

K

Pr�nk�pk� � �
k�1

K

�pk,J�1�
nk,J�1�1 � pk,J�1�

1�nk,J�1

� �
j�1

J

Ik,j��pk,j�
nk,j�1 � pk,j�

1�nk,j (9)

The prior probability density p(�) is defined as

p��� � p�x0��
j�1

J�1

p��j� (10)

where p(x0) is a uniform probability density on the interval [�a, a]
and p(�j) � p(�j

�2) is a gamma probability density with parameters 

and � for j � 1, . . . , J � 1.

For inference purposes, we compute the marginal posterior proba-
bility density of each component of �, defined from

p��j�N� �� p���j�,x�N�d��j�dx (11)

where �[ j] denotes the elements of � excluding �j. We compute Eqs.
7 and 11 using Monte Carlo Markov Chain (MCMC) methods
(Congdon 2003; Gilks et al. 1996). In Bayesian analyses, MCMC
methods are widely used Monte Carlo techniques for evaluating joint
and marginal posterior probability densities by simulating stationary
Markov chains. Because the Bayesian analysis provides an approxi-
mate posterior probability density for each parameter �j in the form of
a set of Monte Carlo samples, we can use any summary statistic of the
set of Monte Carlo samples, such as the mean or median, as the
Bayes’ estimate of the parameter. Similarly, 100%(1 � 
) confidence
(Bayesian credibility) intervals can be computed directly by taking the

/2 and the 1 � (
/2) quantiles of the Monte Carlo sample probability
density.

We conduct the MCMC computations using the software Win-
BUGS (Lunn et al. 2000; Spiegelhalter et al. 2004). Given specifica-
tions of the prior and joint probability density of the data or likelihood
models, WinBUGS chooses a Monte Carlo scheme to simulate the
desired posterior probability densities. It is possible for the user to
select the Monte Carlo scheme. In our simulations we use the default
schemes chosen by WinBUGS. For the analyses we present here, we
provide the WinBUGS code and interface to run it using Matbugs
(Murphy and Mahdaviani 2005) from Matlab (The MathWorks,
Natick, MA) at our website http://www.ucdmc.ucdavis.edu/anesthe-
siology/research/asmith.html.

We assessed convergence of our MCMC simulation by first ana-
lyzing graphically the stationarity and mixing of three Monte Carlo

chains. Second, we tracked the Brooks–Gelman–Rubin statistic,
which compares between- and within-chain variance (Brooks and
Gelman 1998; Gelman and Rubin 1992), and required that it be 
1.2
for all parameters (Kass et al. 1998). For the tasks we consider in
RESULTS, 
30,000 Monte Carlo iterations per chain (including 1,000
burn-in iterations) were needed to achieve convergence in 
5 min of
CPU time on a Pentium IV desktop computer.

Specification of initial conditions in interleaved
learning experiments

In experiments in which the subject is believed to start with an
initial response bias, we estimate the initial probability of a correct
response under the Bayesian formulation by assigning an uninforma-
tive prior to the mean of each initial state x0,j for all tasks, j � 1, . . . ,
J. A second approach, which we use in our full Bayesian-interleaved
analyses, is to use knowledge of the structure of the experiment. This
is particularly useful in binary response experiments in which a
correct response for one task corresponds to an incorrect response for
a second task. For example, in the T-maze task, if the animal has an
initial left-turn tendency, then high-tone associations will appear all
correct and low-tone associations will appear all incorrect. In this
case, we assume at trial zero that the probability of a correct response
to the high tone and the probability of a correct response to a low tone
sum to one. In the state-space domain on [��, �], this means that the
sign of the cognitive state for the high tone is opposite in sign to the
sign of the cognitive state for the low-tone association at trial zero.

Analysis of learning

The learning curve is the estimate of the probability of a correct
response as a function of trial number. We report three estimates of
the learning curve. For each task (association) j the first learning curve
is computed without bias correction from the Bayesian analysis using
Eq. 5, defined as

p̂k,j
B � �1 � exp �x̂k,j��

�1 exp�x̂k,j� (12)

for tasks j � 1, . . . , J where the circumflex accent (hat) denotes the
estimate. The second learning curve estimate is computed with the
bias correction from the Bayesian analysis by evaluating the estimates
computed in the Bayesian analysis in Eq. 6, defined as

p̂k,j
BI � �1 � exp �ẑk,j��

�1 exp�ẑk,j� (13)

The third learning curve estimate is the maximum-likelihood esti-
mate described previously in Smith et al. (2004), which does not
account for either the interleaved nature of the learning or the
response bias, and is defined as

p̂k,j
EB � �1 � exp�x̂k,j

EB���1 exp�x̂k,j
EB� (14)

As in our previous analyses (Smith et al. 2004, 2005), we define the
learning trial for each estimation procedure in terms of the ideal
observer (IO). We chose a level of certainty of 0.95 and defined the
ideal observer learning trial with a level of certainty 0.95 [IO(0.95)] as
the earliest trial r, such that the probability of a correct response is
�0.95 for the all trials k � r.

Experimental protocol: object–place association task

As a second more complex example, we also consider data from an
actual experiment in which a monkey was trained to associate four
different object–place combinations viewed on a computer screen
with either a late or early bar release response (Fig. 1; object–place
associative learning task; Wirth et al. 2005). In this task, the animal
initiated each trial by fixating on a central plus shape on a computer
monitor. One of two possible visual objects was then shown in one of
two possible places on the monitor for 500 ms. Each day, two novel
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objects and two distinct spatial locations on the computer monitor
were used. After a delay interval of 700 ms, an orange circle was
shown for 500 ms followed immediately by a green circle for another
500 ms. Each object–place combination was associated with either an
early bar release during the orange circle (early release) or a late bar
release during the green circle (late release). An example learning set
is shown in Fig. 1B. A correct early or late bar release response
resulted in a liquid reward. Previous analysis showed that monkeys
commonly exhibit early/late response biases on this task (Wirth et al.
2005).

R E S U L T S

Analysis of a single learning task using empirical Bayes and
full Bayesian approaches

We first compared the learning curves estimated by the full
Bayesian (FB) MCMC implementation for a single learning
task with our previously described likelihood-based, empirical
Bayes (EB) approach (Smith et al. 2004). As an example
sequence, we simulated a 30-trial sequence of correct and
incorrect responses that represent, say, the responses to a
low-tone–right-turn association in the T-maze task described in
METHODS. The correct/incorrect responses are shown as black/
gray squares above Fig. 2, A and B. The data suggest that the
animal may have a bias at the start of the experiment because
there are initially 10 consecutive incorrect responses. After
trial 20, the task appears to be learned because there are 10
consecutive correct responses.

For both the EB and FB approaches we assume the unob-
served cognitive state process follows the random walk given
by xk,1 � xk�1,1 � �k,1 for k � 1, . . . , K, where �k,1  N(0,
�1

�2) with x0,1 � 0 (EB approach) and x0,1  N(0, �1
�2,) (FB

approach). Fixing the initial mean of x0,1 at zero, we implicitly
assume the probability of a correct response at the time step
before the first observation is chance at 0.5. For the EB
approach, we use the EM algorithm to estimate unknown
variance parameter (�1

�2) and the cognitive state process. For
the FB approach, we use MCMC with gamma priors for �1

�2 to
ensure that the variance values are always positive. The learn-
ing curve is computed from the state estimates using Eq. 12.

The EB approach learning curve (Fig. 2A, median and 90%
confidence bounds) starts with a probability close to 0.2 at trial

1, declines, shows a slight increase from trials 9 to 11, and then
monotonically increases from trial 14 onward. The IO(0.95)
learning trial from this analysis is trial 22. The FB learning
curve shows a similar structure (Fig. 2B, green dotted and red
solid curves with corresponding 90% confidence bounds). We
show FB learning curves estimated with two different choices
of a gamma prior, with parameters (5, 5) and (10, 10). Both of
these priors have a mean of 1 with respective variances of 0.2
and 0.1. In this analysis, the confidence bounds are slightly
narrower, resulting in IO(0.95) learning trial estimate of 21,
one trial earlier than the EB learning trial estimate.

This analysis shows that for learning curves estimated for a
single task, the EB and FB approaches give similar solutions.
The discrepancy between estimates of the confidence bounds
results from slight differences in model specification and esti-
mation.

Analysis of simulated interleaved learning: a conditioned
T-maze task

As our first illustration of the FB analysis applied to an
experiment in which tasks are presented in an interleaved
manner, we simulated binary data of a rat performing the
conditioned T-maze task described in METHODS. We assume the
animal starts the 60-trial experiment with a left-turn bias (Fig.
3, A and B, top blue/red arrowheads indicate left/right turns,
lower black/gray squares indicate correct/incorrect responses,
respectively). We constructed the data such that the animal
initially followed the strategy of turning left for the first 20
trials, chose randomly for the next 20 trials, and then per-
formed correctly for both associations for the remaining 20
trials. For simplicity in simulating these data, we assumed the
high-tone–left-turn and low-tone–right-turn associations were

P
ro
ba
bi
lit
y
of
a
C
or
re
ct
R
es
po
ns
e

Trial Number

A

B

22

21

FIG. 2. A: empirical Bayes (EB) estimate of the learning curve (median and
90% confidence bounds) for a sequence of binary data corresponding to the
responses to the low-tone–right-turn association in a simulated T-maze task.
Correct/incorrect responses are shown above each panel as black/gray squares,
respectively. B: full Bayesian (FB) estimates of learning curves and 90%
confidence bounds for the same data set as in A. Choice of prior on the
precision of the random walk can result in slightly different learning curves.
Priors used, shown in B, result in similar learning curves and are gamma with
parameters (5, 5) (green dashed curve) and (10, 10) (red solid curve).

+ + ++

B

A

Example of a set

+ + + + +

FIG. 1. A: schematic of the object–place association task described in the
text. B: example set of 4 possible associations learned in one experiment.
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tested on alternating trials. This is not necessary as long as the
presentation order is pseudorandom with equal probability for
both auditory cues. Therefore our data consisted of 60 re-
sponses for the bias estimation and 30 responses for each high-
and low-tone association.

A FB learning curve analysis computed for the low-tone–
right-turn portion of the task without taking into account
behavioral bias (Fig. 3A, green curves) indicates that perfor-
mance is below chance (a probability of 0.5 for this task) at the
start and rises above chance in the second half of the experi-
ment. The learning curve for the high-tone–left-turn associa-
tion (Fig. 3B, green curve) starts close to 1, drops below
chance, and then rises back up to 1 by the end of the experi-
ment. The time course of the cognitive process corresponding
to each of these learning curves closely mirrors the time course
of its corresponding learning curve (Fig. 3C, blue and purple
curves for low- and high-tone responses, respectively).

We now consider the cognitive state for the response bias
(Fig. 3C, black curve). Because these data contain 20 consec-
utive ones at the start of the experiment, the cognitive process
for the response bias is initially positive and does not decline
to zero until the response behavior becomes more variable after
trial 20. To correctly identify the learning behavior, we follow
Eq. 6 and add the cognitive state process for the bias to the
cognitive state process for low-tone responses and subtract it
from the cognitive state process for the high-tone responses.
After correcting for the response bias, the estimates of learning
curves for low- and high-tone trials (Fig. 3, A and B, red curves
and red-shaded 90% confidence bounds) are similar. With the
bias correction, both learning curves are close to chance for the
first 20 trials, fall below chance for trials 22–35, and increase
almost monotonically from trial 36 to the end of the experi-
ment.

For this particular example by including the cognitive state
related to response bias, the position of the IO(0.95) learning
trial changed by only one trial for each association. However,
the shape and width of the learning curves distributions did
change. This new analysis alters our interpretation of the state
of learning over the initial third of the experiment. First, if we
consider the low-tone–right-turn trials (green curves, Fig. 2A),
our initial analysis would have indicated a run of nine trials at
the start of the task where the animal was performing signifi-
cantly below chance, possibly leading to the conclusion that
the animal knew the association but was deliberately avoiding
a reward. The addition of a term representing the cognitive bias
state critically increased the width of the learning curve con-
fidence bounds at the start, making this conclusion less credi-
ble. Second, for the high-tone–left-turn trials if we ignore turn
bias (Fig. 2B, green curves), the learning curve is U-shaped and
the animal appears to have learned, then forgotten, and then
learned again. The addition of a bias correction lowers the
learning curve and widens the confidence bounds in the initial
20 trials. Although it is impossible to be certain that the animal
did not learn the high-tone–left-turn association at the start and
then forget it, the lack of variability in its responses suggests
that it is highly plausible to subtract out the “perseverative”
behavior in the first 20 trials.

Analysis of actual interleaved task learning: object–place
association task

To illustrate the FB analysis applied to an actual interleaved
learning experiment, we consider data from the object–place
association task described in METHODS (Fig. 1; Wirth et al.
2005). In this experiment, the animal was presented with four
object–place associations over 157 total trials. Associations 1
through 4, also known as conditions, were presented for 41, 41,
35, and 40 trials, respectively, and their correct/incorrect re-
sponses are shown as black/gray squares above the panels in
Fig. 4. The correct response for conditions 1 and 3 (Fig. 4, A

FIG. 4. Learning curves and 90% confidence bounds computed using the
FB approach for real data from 4 interleaved associations in an object–place
association task. Correct/incorrect responses for conditions 1–4 are indicated
as black/gray squares above A–D, respectively. In this example, the data are
fitted assuming each association is learned in isolation and assuming that the
probability of a correct response at the start of the experiment is chance (0.5).
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FIG. 3. Learning curves computed for simulated T-maze experiment for the
low-tone–right-turn trials (A) and high-tone–left-turn trials (B). Correct/incor-
rect responses are shown as black/gray squares above each panel. Blue/red
arrowheads above each panel indicate the left/right turns, respectively. Animal
has a significant left-turn bias at the start as indicated by the run of 20 blue
arrowheads at the start of the experiment. Median learning curves computed
without taking into account bias (FB approach) are shown in green. Median
learning curves and 90% confidence limits from the FB-interleaved approach
are shown in red. Estimated cognitive processes (xk,1, xk,2, and xk,3 for k �
1, . . . , K) are shown in C (blue, purple, and black curves, respectively).
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and C) was an early bar release, whereas the correct response
for conditions 2 and 4 (Fig. 4, B and D) was a late bar release.
Figure 4, A–D (black curves) illustrates the FB learning curves
and the 90% confidence bounds for the set of four object–place
associations analyzed as if each task were learned separately.
We conclude that conditions 1, 2, and 4 are all learned during
the experiment with IO(0.95) learning trials of 36, 13, and 21,
respectively.

Figure 5, A–D shows the FB learning curves for the four
object–place associations in their true presentation order. The
top row of colored squares shown in Fig. 5 displays the early
(blue squares) and late (red squares) releases. The second row
of colored squares are the correct (black squares) or incorrect
(gray squares) responses for these conditions. These response
data are the same response data as shown in Fig. 4. The release
data suggest that the animal may have an early release bias at
the outset of the experiment and a late release bias at the end
of the experiment.

If the animal has an early release bias at the start of the
experiment, the FB model should lower the learning curve for
associations with early release reward until it is clear that the
animal’s responses to all four associations vary from trial to

trial. Once the release responses show variability we can be
more certain that, either the animal has no bias or, assuming the
presentation is pseudorandom, it is responding correctly to the
presented associations. We require the magnitude of the bias
term to be high when a larger number of similar release
responses are made and low when responses are switching
between late and early in an interleaved manner.

To apply the interleaved state-space model with bias to this
task we take J � 1 � 5 and assume that there are four cognitive
states and a fifth cognitive state representing the bias. Each of
the four cognitive processes for one of the four association
tasks is only partially observed because a different task is given
at each trial. As in the simulated example, we used Eq. 6 to
compute the bias-corrected learning curves where the sign in
front of xk,5 is negative for early-release associations (condi-
tions 1 and 3, Fig. 5, A and C) and positive for late-release
associations (conditions 2 and 4, Fig. 5, B and D).

As in the previous example, we first plot the learning curves
computed without explicitly taking into account possible re-
sponse bias (FB approach, Fig. 5, A–D, green curves are
median and 90% confidence limits). These are the learning
curves computed solely from the cognitive state processes xk,j,
without considering either the interleaved structure in the
experiment or the possible response bias. The performance for
conditions 1 and 4 is above chance, i.e., the lower 90%
confidence bound is �0.5, and remains �0.5, respectively,
from trials 112 and 69 until the end of the experiment. The
performance on condition 2 (Fig. 5B) surpasses chance at trial
42, but falls below chance at the end of the experiment and
would therefore be designated not learned. Performance on
condition 3 shows little to no indication of learning because
performance is below chance from trial 44 onward.

Figure 5E (black curve) shows the estimated cognitive state
for the response bias. The binary response data (Fig. 5, A–D
above) suggest a tendency for early release up to nearly trial 40
(multiple blue squares in the top row of Fig. 5A) and a
tendency for late response bias after that (multiple red squares
in the top row of Fig. 5A). This same pattern is reflected
quantitatively in the estimated cognitive state for the response
bias (Fig. 5E, black curve with red 90% confidence bounds).
There is a clear early-response bias for the first part of the
experiment and an overall late-response bias for the balance.
Applying the FB-interleaved method with the estimated bias
correction (Fig. 5A, red curve and shaded 90% confidence
bounds) moves the learning trial for condition 1 (early-reward)
from 112 to 93. It has the effect of lowering the learning curve
at the start and raising the learning curve at the end of the
experiment. For the other early-reward condition (3), the point
at which the learning curve is below chance moves from trial
44 to trial 88 (Fig. 5C) because of the additional uncertainty
introduced by including the bias correction. For the late-release
conditions (2 and 4, Fig. 5, B and D), the late-release bias at the
end of the experiment has the effect of lowering the learning
curves. This effect is particularly noticeable for condition 4,
which is not learned according to the FB-interleaved method,
but which is learned at trial 69 with the FB approach.

Consideration of the true presentation order and the possible
response bias in our model has reduced the number of associ-
ations estimated from three (FB approach applied to binary
series from each task separately) to two (FB approach) to 1
(FB-interleaved). The difference between the isolated FB anal-
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FIG. 5. Learning curves computed for real data from 4 conditions in an
object–place association task (A–D, respectively). Correct/incorrect response
data are shown as black/gray squares above A–D, respectively. Late/early
responses at each trial are also shown as red/blue squares, respectively, above
each panel. Conditions 1 and 3 (A and C) were rewarded for an early bar
release. Conditions 2 and 4 (B and D) were rewarded for a late bar release.
Median learning curves and 90% confidence bounds computed using the FB
approach are shown in green. Median learning curves with 90% confidence
bounds computed using the FB-interleaved approach are shown in red. E:
estimated cognitive process for behavioral bias with 90% confidence bounds.
Large number of early responses in the data at the start causes this curve to be
significantly above zero early in the experiment. From roughly trial 45 onward
the responses are biased toward late (negative values).
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yses (Fig. 4) and the FB approach (Fig. 5, green curves) is first
in the inclusion of true presentation order resulting in gaps
between observations and second in the specification of the
initial conditions. For the FB approach applied separately (Fig.
4), we assumed the starting probability was at chance and equal
to 0.5. For the FB approach in Fig. 5 we estimated the initial
conditions from the data assuming the initial distributions of
the probability of a correct response for late-release conditions
and the probability of a correct response for early-release
associations summed to one. Finally, inclusion of the tendency
to keep making late releases in the FB-interleaved approach
had the effect of lowering the late-release association learning
curves (associations 2 and 4). That is, because the subject
tended to make late releases across all tasks more often than
chance, the model indicated that the experimenter should be
less certain that the association was truly learned.

D I S C U S S I O N

We have presented a state-space model for analyzing learn-
ing experiments consisting of binary time series in which two
or more tasks are presented in an interleaved manner and the
subject may have a response bias. This research builds on our
previous state-space framework for modeling learning from
binary measurements in behavioral experiments. In simulated
and actual data analyses we demonstrated the ability of our
methods to disambiguate bias from actual learning. We intro-
duced a Bayesian approach for model estimation and showed
that all our previous definitions of learning criteria translate
directly into the Bayesian framework. For the interleaved
association task, we demonstrated that the monkey had an
early-release bias at the start and a late-release bias at the end
of the experiment. This finding altered our interpretation of this
experiment in that when the analyses of the individual response
time series were analyzed separately we concluded that the
animal learned three of the four conditions. However, by
considering all of the tasks simultaneously and considering the
animal’s response bias we can be certain only that the animal
learned one of the conditions.

State-space modeling of interleaved learning and bias

To construct a state-space model that allowed us to represent
the cognitive state of each task the subject was learning along
with the state of its response bias we augmented the state
equation for the learning process to include a component for
each cognitive state and a component for the response bias.
This differed from our previous work in which each interleaved
task was treated as if it was being learned in isolation and the
model analyses were conducted separately. We used the aug-
mented state-space model previously to compute simulta-
neously individual and population learning estimates (Smith et
al. 2005). In this case, the learning curve for a given task
depends only on the cognitive state variable for that process. In
our new model, the learning state for a given task is defined as
the difference or sum between the learning state for that task
and the state of the subject’s response bias (Eq. 6). The
cognitive state of the subject’s bias tracks whether the response
behavior favors a particular response or occurs at random. To
accurately characterize the subject’s learning state we have to
consider four cases. If the response behavior is random, then

the cognitive state process for the bias should be close to zero
and have little effect on the learning state and thus on the
estimate of the learning curve. If the response behavior were
not random and biased toward a particular response then
subtracting the bias state from the cognitive state of the
particular task provides a more accurate characterization of the
subject’s learning state for that task. On the other hand, if the
response behavior were not random and biased away from the
reward or response the bias-corrected estimate of the learning
state is in this case the cognitive state for the task plus the
cognitive state for the bias. In the final case, the response
behavior is all correct in which case, assuming the presentation
order of the tasks is pseudorandom, the cognitive state process
for the bias should again be close to zero and have little effect
on the learning state. Taking these four possibilities into
account, the bias-corrected learning curve for each task is
defined as a function of the learning state from Eq. 13.

The observation component of our new state-space model
places the response data in the proper temporal sequence in
which they are observed and uses as a second observation
process the subject’s sequence of actual responses on each
trial. This is different from previous state-space models of
learning in which the response data for each task are analyzed
separately and the response behavior of the subject is not
considered.

Bayesian model fitting

In addition to introducing a more detailed model for learn-
ing, we have also introduced use of a Bayesian approach to
model parameter estimation. The parameters in the new state-
space model could have been estimated as in our previous work
by maximum likelihood using the EM algorithm (Smith et al.
2004, 2005). Despite the similar structure between our previ-
ous and current state-space models of learning, an important
drawback to this approach is that it requires the design of a new
EM algorithm for each new model formulation. This makes it
more challenging to provide broadly useful software that neu-
roscientists may use to analyze their behavioral data. In con-
trast, the Bayesian formulation of the task allows us to conduct
the model fitting using Monte Carlo Markov Chain methods
implemented in the WinBUGS (Lunn et al. 2000; Spiegelhalter
et al. 2004) software package. An important advantage of
WinBUGS is that it suffices to specify the state-space model
and appropriate prior distributions for the parameters and
WinBUGS will implement an efficient Monte Carlo procedure
to simulate the exact posterior densities of the parameters. We
found that for the analyses presented here simply using the
default settings in WinBUGS and specifying prior distributions
for the parameters as described in RESULTS yielded a robust
approach to model parameter estimation. We found that cur-
rently accepted criteria for evaluating convergence of the
Markov Chain worked well for deciding when the Monte Carlo
procedures had accurately computed the posterior densities.

An important improvement of the Bayesian approach is that
it provides estimates of the exact posterior densities for the
state processes, whereas the EM algorithms we previously
implemented provided Gaussian approximations to the state
processes. As is standard, the trade-off between use of the
likelihood-based approach and the Bayesian approach to esti-
mate model parameters is the trade-off between specifying in
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the Bayesian case a prior distribution for the model parameters
and in the likelihood case specifying plausible starting values
for the EM algorithm. We found that the insights we had
gained in specifying starting values for the EM algorithm could
be easily translated into plausible prior distributions for the
MCMC algorithms.

Future directions

Several extensions of the state-space model analysis para-
digm are possible. First, we can include nonbinary response
data such as reaction and response times to provide a more
refined analysis of a subject’s performance. Second, we can
include more complex behavioral response biases in behavioral
experiments. For example, in the object–place task, the animal
might have shown an object bias, responding only on trials in
which one of the objects was presented, but not the other. Once
identified, this kind of bias can be easily modeled using our
state-space framework. Third, in the current state-space model
we have assumed that the experiment is designed such that all
tasks are presented pseudorandomly and with equal probabil-
ity. The state-space model can be adjusted when the tasks are
presented with unequal probabilities by including additional
terms in the state and observation models.

Finally, this state-space model can also be extended to allow
for other types of interaction among learning of tasks. Follow-
ing Usher and McClelland (2001), we can rewrite Eq. 4 as
follows

xk � Axk�1 � �k (15)

where in the current analysis we have A � I. The off-diagonal
elements of matrix A can then be used to assess the level of
competition or enhancement of learning among the interleaved
tasks.

For the applications we consider in which the data are
relatively short sequences of binary responses (
100 trials per
task) the large number of parameters in A (Eq. 15) makes
simultaneous estimation of the model parameters and the
cognitive state more challenging. This is a problem we are
currently studying.

Our results suggest that modeling the interleaved structure in
the learning experiment and making use of data on the sub-
ject’s response behavior through a new state-space model
coupled with an efficient MCMC procedure for model param-
eter estimation using WinBUGS provides both an accurate and
practical approach to characterize learning in complex behav-
ioral experiments.
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