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a b s t r a c t

Deep brain stimulation (DBS) is an established therapy for Parkinson’s Disease and is being investigated as
a treatment for chronic depression, obsessive compulsive disorder and for facilitating functional recovery
of patients in minimally conscious states following brain injury. For all of these applications, quantitative
assessments of the behavioral effects of DBS are crucial to determine whether the therapy is effective and,
if so, how stimulation parameters can be optimized. Behavioral analyses for DBS are challenging because
subject performance is typically assessed from only a small set of discrete measurements made on a
tate-space models
ayesian estimation
ehavior
odel selection

ogistic regression

discrete rating scale, the time course of DBS effects is unknown, and between-subject differences are often
large. We demonstrate how Bayesian state-space methods can be used to characterize the relationship
between DBS and behavior comparing our approach with logistic regression in two experiments: the
effects of DBS on attention of a macaque monkey performing a reaction-time task, and the effects of
DBS on motor behavior of a human patient in a minimally conscious state. The state-space analysis can

BS b
r dev
assess the magnitude of D
important implications fo

. Introduction

Deep brain stimulation (DBS) with macroelectrodes is now an
ccepted treatment for Parkinson’s Disease and is currently being
valuated as a treatment for several neuropsychiatric disorders
Perlmutter and Mink, 2006). Objective measures of effective-
ess are important in both the routine and investigational uses
f DBS—to determine whether DBS is effective at all, and, if so, to
ptimize stimulation parameters (Volkmann et al., 2006). Devel-
ping such measures is challenging, because behavior is usually
uantified by a relatively small number of irregularly spaced obser-

ations along a discrete rating scale, the time course of DBS effects is
ypically unknown, and individual differences may preclude aver-
ging across subjects. Moreover, different behavioral effects may
volve with different time courses and in some cases, these time

∗ Corresponding author at: Department of Anesthesiology and Pain Medicine, TB-
70, One Shields Ave, University of California, Davis, CA 95616, United States.
el.: +1 530 752 7813; fax: +1 530 752 7807.

E-mail address: annesmith@ucdavis.edu (A.C. Smith).

165-0270/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
oi:10.1016/j.jneumeth.2009.06.028
ehavioral facilitation (positive or negative) at specific time points and has
eloping principled strategies to optimize DBS paradigms.

© 2009 Elsevier B.V. All rights reserved.

courses may even be bi-phasic or multi-phasic (Greenberg et al.,
2006; Mayberg et al., 2005; Schiff et al., 2007).

Behavioral analyses of DBS responses generally rely upon clas-
sical neuropsychological tests or assessments of percentage of
correct performances and reaction times using standard statisti-
cal methods (e.g., Frank et al., 2007; Page and Jahanshahi, 2007).
Similarly, behavioral analysis of the effects of microstimulation
experiments in subcortical structures or cortical regions typically
do not assess dynamic effects (Nakamura and Hikosaka, 2006)
or collapse dynamic effects over multiple trials (Williams and
Eskandar, 2006). More recently, Schiff et al. (2007) have applied
a logistic regression approach to determine the effect of DBS on
performance. While their approach, which is applicable to ani-
mal studies and clinical trials, suffices to identify the presence or
absence of DBS effects, it is limited in that it postulates a specific
form for the dynamics.
Here, we extend the method of Schiff et al. (2007) by introduc-
ing models that can assess the temporal dynamics of the behavioral
response to DBS. Our strategy is to consider four models of increas-
ing complexity and increasingly weaker assumptions concerning
the dynamics. Three of these models are logistic regression mod-

http://www.sciencedirect.com/science/journal/01650270
http://www.elsevier.com/locate/jneumeth
mailto:annesmith@ucdavis.edu
dx.doi.org/10.1016/j.jneumeth.2009.06.028
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ls (Fahrmeir and Tutz, 2001; Nelder and Wedderburn, 1972); the
ourth is a state-space autoregressive model (Kitagawa and Gersch,
996). The first two were considered by Schiff et al. (2007) and
dentify a stimulation effect by including stimulation history as a
ovariate. The third model captures some detail about the response
ynamics by allowing each stimulation bout to have a different
ffect size. The fourth model avoids assuming a parametric form
or the response dynamics, and instead uses a state-space approach.
he state-space approach is an extension of earlier models (Smith
t al., 2004, 2005, 2007; Wirth et al., 2003) designed to estimate
earning in behavioral experiments.

For internal consistency and ease of programming, we imple-
ent the four models under a Bayesian framework and estimate

he data likelihood using a Monte Carlo Markov chain (MCMC)
pproach. While this method can be computationally expensive,
eing able to use existing software (WinBugs; Lunn et al., 2000)
educes the programming burden. In addition, the final results, in
he form of samples from the estimated marginal distributions, can
e easily used to make statistical comparisons between different
xperimental time points. For model selection purposes, the soft-
are automatically estimates the deviance information criterion

DIC; Spiegelhalter et al., 2002).
We illustrate our methods by analyzing responses from data sets

rising from two different studies aimed at facilitating behavioral
esponsiveness in the context of the injured brain. The first study
nvolves the responses of normal monkeys undergoing DBS per-
orming a visuomotor reaction-time task. The second study involves
nalysis of behavioral metrics recorded from the crossover phase of
DBS pilot clinical trial involving a severely brain-injured human

ubject (Schiff et al., 2007). In both cases, the state-space method
nd the logistic regression method reveal the presence of a behav-
oral effect of DBS, but the state-space approach identifies a more
etailed picture of its dynamics.

. Materials and methods

.1. Experimental protocols

We describe in this section the two experimental protocols we
tudy.

.2. Central thalamic deep brain stimulation in a macaque
onkey to induce sustained attention

This protocol represents an animal model for the effects of DBS
n attention. As part of an IACUC approved (Weill Cornell Medical
ollege), NIH sponsored study (NS20712; PI, N. Schiff) and subse-
uent industry sponsored study (IntElect Medical, Inc), two rhesus
onkeys (Macaca mulatta) were trained to perform a behavioral

aradigm requiring sustained visual attention (forewarned visuo-
otor reaction-time task). The task consisted of making a saccade

o a visual target (a red square at one of nine preselected locations
hosen at random) followed by a variable period of fixation on the
arget and detection of a change in target color followed by a bar
elease. This standard task, which takes approximately 4 s, requires
ustained attention because in order to receive a reward, the ani-
al must release the bar within a brief time window cued by the

hange in target color. The change in target color occurs after a
ariable delay time chosen at random from a normal distribution
Parasuraman and Davies, 1977). The variable time interval begins
fter the monkey maintains a stable fixation of the initial red square.

ypically, performance is maintained at a high level at the start of
he recording session and diminishes over the 2 h session. Breaks
f fixation and, more rarely, inappropriately timed bar releases or
ailures to release the bar on time, all lead to termination of a trial
nd failure to receive a reward. Thus our behavioral data sets for this
ce Methods 183 (2009) 267–276

experiment are composed of time series of binary observations with
a 1 corresponding to reward being delivered and a 0 correspond-
ing to reward not being delivered at each trial, respectively. The
goal of the experiment is to determine whether, once performance
has diminished as a result of spontaneous fatigue, DBS allows the
animal to recover its pre-fatigue level of performance.

Recordings of extracellular potentials and local field potentials
from sharp electrodes placed in the central thalamus were used
to localize sites for electrical stimulation (Schiff et al., 2002, 2001).
Central thalamic sites were first identified utilizing a 3-dimensional
MRI reconstruction and construction of a customized computer-
designed chamber attachment to guide the electrodes. Recording
sites were referenced to the animal’s MRI images and in compar-
ison with standard rhesus monkey atlas coordinates (Paxinos et
al., 2000). The central thalamus, including the anterior intralami-
nar nuclei (central lateral, paracentralis) and related paralaminar
regions of the median dorsalis nucleus were targeted for investi-
gation (Schiff and Purpura, 2002). At some recording sites in the
central thalamus, the local field potential had an increase in power
in the 30–70 Hz band during the delay period of successful tri-
als. These sites were used for electrical stimulation (Schiff et al.,
2002). Bouts of electrical stimulation were repeatedly administered
to the central thalamus across blocks of trials during the ongoing
task performance (see results) delivered through a bipolar record-
ing/stimulating microsyringe (Crist Instruments Co.) using constant
current stimulation (FHC Co. Model Pulsar 6 bp) in the intensity
range 200–500 �A (M1) or a customized model bipolar stimula-
tion electrode (M2). Stimulation was applied as a brief train of
5 biphasic stimulation pulses (50 �s/phase) at a stimulation fre-
quency of 50 Hz (chosen to reflect the average range of elevated
firing rates seen in neuronal populations with increasing firing rates
during the delay period, and corresponding to the middle range of
high frequencies identified in local field potential recordings in the
characterization experiments). The choice of the train of 5 pulses
was further inspired by recordings in intralaminar central lateral
nucleus (CL) of alert cats that demonstrated bursts of ∼5 spikes
at ∼800–1000 Hz at a rate of approximately 40 Hz (Steriade et al.,
1993).

2.3. Central thalamic deep brain stimulation in a human clinical
trial

A 38-year-old right-handed man who sustained a closed head
injury following an assault 6 years prior to the study was enrolled in
a clinical trial designed to determine if central thalamic deep brain
stimulation can improve arousal regulation and facilitate behav-
ioral responsiveness (Schiff et al., 2007). It was hypothesized that
stimulation in this region may allow recruitment of a wider array of
networks in the brain and thereby improve the patient’s responsive-
ness. We summarize the key features of this patient and the clinical
trial here; further details can be found in Schiff et al. (2007). The
patient remained in a minimally conscious state (MCS) defined by
Giacino et al. (2002) as a “condition of severely altered conscious-
ness in which minimal but definite behavioral evidence of self or
environmental awareness is demonstrated.” Quantitative behav-
ioral assessments in MCS patients capture a range of behaviors from
small movements in response to environmental stimuli to inconsis-
tent communication through verbalization or gesture. Pre-surgical
assessments were conducted to enable pre-selection of the three
primary outcome variables. Subsequent to completion of the pre-
surgical baseline, the patient underwent implantation of bilateral

DBS electrodes. The electrodes remained off until initiation of a DBS
titration period which began 50 days after implantation, except for a
2-day period of stimulation testing in the immediate post-operative
period. Different combinations of frequency, intensity, electrode
contact activation and periods of ON and OFF times were tested
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n order to optimize behavioral outcome responses. The primary
utcome measures were subscales of the JFK Coma Recovery Scale
Revised). In addition, three secondary outcome measures were
sed (object naming, limb control and oral feeding). Further details
f these measures can be found in the Supplementary information
o Schiff et al. (2007).

At the end of the titration phase, a 6-month double-blinded
lternating ON/OFF cross-over trial began using optimal parame-
ers selected during the titration phase. We analyze in detail one of
he secondary outcome measures during this period, oral feeding
ndex, assessed by a speech pathologist during scheduled feeding
essions. These indices lie on a scale from 1 to 5, ranging from nor-
al manipulation of food (chewing and swallowing) to oral feeding

ot attempted due to underarousal or failure to open mouth. Pre-
iously, Schiff et al. (2007) analyzed this data as binary data having
onverted indices 2 or higher to zero and index 1 to one. Here we
onsider the full data set as binomial observations. The index val-
es are transformed to a scale from 0 to 4 for consistency so that
0 indicates poor performance and a 4 indicates normal (good)

erformance.
We also analyze limb movement and arousal data during the

ame 6-month period. The limb movement data was collected
eekly and consisted of between 21 and 24 binary observations

f the patient’s ability to demonstrate common tasks (as assessed
y team of therapists). In total, there were 25 count observations
cross the 6 month cross-over period. The arousal data consists of
etween 3 and 4 binary measurements per day.

. Models

.1. A state-space model to characterize arousal and attention
tate dynamics

We construct a state-space model to characterize arousal and
ttention state dynamics in a subject receiving thalamic stimula-
ion. To define the state-space model we require observation and
tate equations. The state equation is defined by the following dis-
rete first order autoregressive (AR (1)) process

k = �xk−1 + εk (1)

here xk is the arousal state of the patient at time k = 1, . . ., K, εk is
ero-mean, Gaussian noise with variance �2

ε and �, is the correlation
etween successive observations. The initial state, x0, is assumed to
e unknown.

We consider two possible formats for the observations: data in
he form of binary responses (i.e., the monkey behavioral datasets
escribed above) and data in the form of proportions (i.e., the
uman datasets described above). For the binary response data the
bservation model is assumed to be Bernoulli where

r(nk|xk, �) = pnk
k (1 − pk)1−nk (2)

here � = (�, �2
ε ) and where nk = 0 if the response is incorrect at

ime k and nk = 1 if the response is correct for k = 1, . . ., K. Here, pk is
he probability of a correct response and is related the state using
he logistic transform

og[pk(1 − pk)−1] = xk. (3)

or the proportion response data the observation model is assumed
o be binomial where(

Nk

)
n N −n
r(nk|Nk, xk, �) =

nk
p k

k (1 − pk) k k (4)

here nk and Nk are slightly different for each of the human data
ets and are described as follows. The human oral feeding data
ndices range from 0 (unarousable) to 4 (chewing, swallowing, and
ce Methods 183 (2009) 267–276 269

completing a meal). In this case, nk is the observed index on day k
and Nk = 4 on all days k = 1, . . ., K. For the human limb control data,
nk is the sum of the binary observations in week k and Nk varies
between 21 and 24 total observations in that week. For the arousal
data, nk is the sum of observed binary indices per day and Nk is
the total number of observations (3 or 4) on that day. We compute
a smoothed estimate of this normalized performance data pk as a
function therefore of day k for the oral feeding and arousal data and
as a function of week k for the limb control data.

For the latter two data sets (limb control and arousal) the use of
a binomial model is the principled choice for independent binary
observations. For the oral feeding data, the value of nk is based on an
observed index between 0 and 4, and there is no a priori expectation
for the distribution. We also chose to implement a binomial link for
this data for simplicity and consistency with the other types of data
and models. (We also considered a Poisson link, and found that,
according to the DIC, it provided a worse fit.)

3.2. A logistic regression approach to characterize arousal and
attention state dynamics

For comparison we also fitted a logistic regression model (LR)
to the data using a similar structure to the likelihood-based model
used in Schiff et al. (2007). The proposed model for the cognitive
state is

xk = A + Bk + C

k∑
k�=0

Sk� R exp[−R(k − k�)] (5)

where A, B and C are parameters to be estimated. The final term in
Eq. (5) determines how much stimulation history affects the cogni-
tive state. Indicator Sk takes values +1 and 0 depending on whether
stimulation is on or off, respectively. The parameter, R, in Eq. (5)
determines how fast the electrical stimulation affects the cogni-
tive state, and has units of 1/(sampling interval). Schiff et al. (2007)
found that model fits were equally adequate over a broad range
of values of R, and chose R = 1; we do the same here. We assume
Bernoulli/binomial observation models as in the state-space model
above (Eqs. (2) and (4)). The estimated performance is linked to the
data with the logistic transformation (Eq. (3)).

As in Schiff et al. (2007) we fitted the models without stimulation
effect (i.e., with parameters A and B, but not C) and with stimulation
effect (i.e., with parameters A, B and C). We refer to these two models
as LR AB and LR ABC1, respectively. In addition, we also considered
a third version of the model that allowed for different values of C
for each stimulation period. To implement this, we define multiple
stimulation vectors Si

� for i = 1, . . ., S, where S is the total number
of stimulation ON periods. Each vector Si

� takes values zero except
during the ith stimulation ON period where it is +1. The cognitive
state Eq. (5) becomes

xk = A + Bk +
S∑

i=1

Ci

k∑
k�=0

Si
k�

exp[−(k − k�)]. (6)

We refer to this model as LR ABC2.

3.3. Bayesian model fitting: state-space model

Previously we have computed estimates of the unknown state
and parameters using maximum-likelihood approaches and the

EM algorithm (Dempster et al., 1977; Smith and Brown, 2003;
Smith et al., 2004). We make use here of a Bayesian approach
and Monte Carlo Markov chain estimation methods (e.g., Congdon,
2003; Robert and Casella, 2004; Smith et al., 2007). We let n =
{n1, . . . , nK } for the binary data or n = {n1, . . . , nK , N1, . . . , NK } for
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he binomial data and x = {x1, . . . , xK }. Defining the prior distribu-
ion for the parameters as p(�), the posterior distribution of the
arameters and the state, x, given the data is

(�, x|n) = p(n|x, �)p(x|�)p(x0)p(�)
p(n)

(7)

here

(n|x, �) =
K∏

k=1

pnk
k (1 − pk)1−nk (8)

or the Bernoulli model

(n|x, �) =
K∏

k=1

(
Nk

nk

)
pnk

k (1 − pk)Nk−nk (9)

or the binomial model

(x|�) =
K∏

k=1

(2��2
ε )−1/2 exp

{
− 1

2
(xk − �xk−1)2

�2
ε

}
(10)

nd

(n) =
∫

p(�, x, n) d� dx. (11)

nder the Bayesian framework, it is required that we specify priors
n the components of � = (�, �2

ε ) in addition to a prior distribution
n the initial state, x0. For the autoregressive decay parameter �
e assumed a uniform prior on the interval [−1, 1]. For the inverse

ariance (= precision), �, we used a broad gamma prior with location
nd shape parameters 0.1 and 0.01 respectively corresponding to a
ean of 1 and variance of 100 for both models. The distribution

f the initial state is assumed to be Gaussian with zero mean and
ariance �2

ε /(1 − �2). The Bayesian analysis provides an estimate
f the posterior probability density of all the unknown parameters
f the model. From these sample estimates it is possible to directly
stimate the mean and median as well as 100% (1 − ˛) Bayesian
redible intervals.

We can evaluate Eq. (7) using standard Monte Carlo Markov
hain methods in WinBUGS (Lunn et al., 2000). Implementation

n this software merely requires specifying the model equations
Eqs. (1)–(3) or (1), (3), (4)) as well as priors for the unknown
arameters p(�). The Bayesian approach treats the missing obser-
ations as another parameter to be estimated. For the problems
onsidered in Section 4 we found that satisfactory convergence
f each parameter’s posterior probability density was achieved
sing 10,000 iterations of 3 chains after 5000 burn-in iterations.
onvergence was confirmed by visual analysis of the mixing of
he 3 chains for a subset of the parameters as well as a require-

ent that the Brooks–Gelman–Rubin (BGR) statistic be <1.2 for
ll parameters (Brooks and Gelman, 1998; Gelman and Rubin,
992). Our choice of number of chains and iterations was made
ased recommendations made in Kass et al. (1998). For a binary
ata set of length 1350 trials (as in our first example) run time
anges from 1 min (LR AB) to 40 min (state-space) on a 2.39 GHz
esktop computer with 2 GB RAM. We implemented the models
sing the software package WinBUGS because of its user-friendly
odel declaration language. WinBUGS is not designed to handle

xtremely large models and data sets (e.g., >2000 trials). Other

oftware (or a filtering approach) may be preferable in these sit-
ations. For the models here we provide the WinBUGs code and a
atlab script (The MathWorks, Natick, MA) to drive it using Mat-

ugs (Murphy and Mahdaviani, 2005) at the following web address:
ttp://www.neurostat.mit.edu/behaviorallearning.
ce Methods 183 (2009) 267–276

3.4. Bayesian model fitting: logistic regression models

For comparison with the state-space results we chose to imple-
ment the logistic regression models under the same Bayesian
framework instead of the maximum-likelihood approach used pre-
viously (Schiff et al., 2007). Priors on the parameters A, B and C were
zero-mean Gaussian with very large variance (100,000), ensuring
that the prior did not materially influence the behavioral state in
any particular direction.

3.5. Model selection

Previously Schiff et al. (2007) used the likelihood ratio test to
compare their non-Bayesian (nested) regression models and used
this method to demonstrate the significance of the stimulation
effect in the data. Since we now have 4 (non-nested) Bayesian mod-
els to compare, we make use of the estimated mean of the posterior
deviance and the deviance information criterion (Spiegelhalter et
al., 2002). The estimated mean of the posterior deviance (D) is
the Monte Carlo estimate of the deviance (−2 log(likelihood)). The
DIC is an approximate Bayesian analogue of the Akaike Informa-
tion Criterion (AIC) used in model selection and is a technique for
penalizing the deviance when a large number of model parame-
ters is employed. Since in the Bayesian framework, the number of
parameters is not necessarily clear, the DIC estimates the number of
effective parameters from the Monte Carlo simulation. The values
of D and DIC are computed as part of the MC simulation in Win-
BUGS. Typically, one model can be regarded as superior to a second
model if its DIC value is lower by more than 5–7 (Spiegelhalter et
al., 2002).

3.6. Comparing performance across trials

For both the state-space model and the logistic regression mod-
els, comparison between estimated probabilities of the cognitive
state at any given trial is straightforward using the Monte Carlo
samples computed by the algorithm. Since these samples are drawn
from the full posterior joint distribution of cognitive state across all
trials, they automatically account for potential covariance between
trials and therefore a correction for multiple comparisons is not
required. That is, correction for multiple comparisons is typically
performed when many independent observations are made. In this
situation the covariance between the cognitive states at all trials is
estimated, the states are not assumed to be independent, and for
each pairwise comparison we are able to ask the simple question:
given two covarying states from the full distribution of states, how
likely are their distributions to be different? The probability that
the distribution of the state at trial xi is larger than the distribu-
tion of the state at trial xj is then computed by pairing the Monte
Carlo samples of xi and xj drawn from their joint distribution and
making a count, Sij, of how many times xi > xj. Assuming we have
S samples from the distribution of each state, the required proba-
bility, Pr(xi > xj), is computed from Sij/S. Performing this calculation
for all pairs (i, j) enables us to plot a probability surface that allows
comparison of performance across the entire length of the clinical
trial/experiment.

3.7. Global comparison of stimulation ON performance with
stimulation OFF performance

In addition to comparing estimated cognitive state on a trial-

by-trial basis, it is also possible to compare stimulation ON
performance with stimulation OFF performance under the Bayesian
framework, again, avoiding the issue of multiple comparisons. To do
this, we identify two states, xON and xOFF, defined as the mean of all
the cognitive states when stimulation is ON and OFF, respectively.

http://www.neurostat.mit.edu/behaviorallearning
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he probability that the two state distributions are different is com-
uted using the sampling procedure described in the paragraph
bove.

. Results

.1. Analysis of central thalamic deep brain stimulation in a
acaque monkey to induce sustained attention

To illustrate the technique applied to binary performance mea-
ures, we consider responses from a monkey performing the
ttention paradigm described in Section 2 (Figs. 1 and 2). In this
xperiment, the monkey performed 1250 trials. Stimulation was
pplied during 4 periods across trials 300–364, 498–598, 700–799
nd 1000–1099, indicated by shaded gray regions in Figs. 1A and B
nd 2A and B. The raw data is summarized by the blue lines with
rror bars, representing the 50-trial block average and its standard
rror. Dividing the results into periods when stimulation is applied
“ON”) and not applied (“OFF”), there are 240 correct responses out
f 367 trials during the ON periods and 501 correct responses from
83 trials during OFF periods. According to the standard binomial

roportion test the responses during ON periods are more often
orrect than during OFF periods with high statistical significance
p < 0.005).

Fig. 1A and B shows response curves and 95% credible intervals
omputed using the models LR AB and LR ABC1 described in Section

ig. 1. Models applied to monkey visuomotor reaction-time task. Raw data is shown with
nd its standard error. Stimulus ON periods are indicated by gray shading. (A and B) Per
espectively. (C and D) Trial-by-trial within experiment comparisons for the performan
omputed, by comparing by Monte Carlo, the performance curve at a value on the x-axis
rial on the x-axis is lower (higher) than the performance at the trial on the y-axis. Dark (
re highlighted in red (blue). (For interpretation of the references to color in this figure le

ig. 2. Models applied to monkey visuomotor reaction-time task. Raw data is shown with
nd its standard error. Stimulus ON periods are indicated by gray shading. (A and B) Perfor
odels, respectively. (C and D) Trial-by-trial within experiment comparisons for the pe

urface computed, by comparing by Monte Carlo, the performance curve at a value on the
t the trial on the x-axis is lower (higher) than the performance at the trial on the y-axis.
evels are highlighted in red (blue). (For interpretation of the references to color in this fig
ce Methods 183 (2009) 267–276 271

2. In Fig. 1A (LR AB), no DBS effect is assumed; in Fig. 1B (LR ABC1)
stimulation is assumed to have an effect (which can be either pos-
itive or negative,) that abates with an exponential time course. For
the LR AB model the parameter estimates (and standard errors) for
A and B were 1.502 (0.132) and −0.001742 (1.77e−4), respectively.
To test the accuracy of the MCMC-based results we also imple-
mented more standard maximum-likelihood methods (glmfit.m:
Matlab, The Mathworks) which yielded values for A and B of 1.495
(0.1312) and −0.001733 (1.78e−4), respectively, indicating that the
two approaches give similar results. For LR ABC1 the estimated
stimulation effect parameter, C, has mean value of approximately
0.37, with 95% credible interval [0.2048, 0.5405]. Since the esti-
mated credible interval of C does not include zero, we may conclude
that the stimulation has a significant effect on the fitted response
curve. Fig. 2A shows the response curve estimates computed using
model LR ABC2. In this model, we computed four values C1, C2, C3
and C4 corresponding to the stimulation effect on the state dur-
ing each of the four stimulation-ON periods (Fig. 2A: gray-shaded
areas). Under this formulation, the response curve decreases dur-
ing the first stimulation period (as does the raw data) and increases
more in the third stimulation-ON period than the surrounding stim-

ulation periods. The estimated mean values for C1, C2, C3 and C4
were approximately −0.27, 0.41, 0.80 and 0.36 with correspond-
ing 95% credible intervals [−0.60, 0.07], [0.12, 0.72], [0.50, 1.12] and
[0.07, 0.66]. From these results we conclude that at the 95% confi-
dence level the first stimulation-ON period has a performance that

blue error bars in Panels A and B representing the average response over 50 trials
formance curves (median and 95% credible intervals) for the LR AB and LR ABC1,

ce curves shown in A and B, respectively. Each panel shows a probability surface
with a value on the y-axis. Dark (light) areas indicate that the performance at the
light) regions were the probability extends beyond the 95% credible interval levels
gend, the reader is referred to the web version of the article.)

blue error bars in Panels A and B representing the average response over 50 trials
mance curves (median and 95% credible intervals) for the LR ABC2 and state-space

rformance curves shown in A and B, respectively. Each panel shows a probability
x-axis with a value on the y-axis. Dark (light) areas indicate that the performance

Dark (light) regions were the probability extends beyond the 95% credible interval
ure legend, the reader is referred to the web version of the article.)
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Table 1
Computed values of posterior mean of deviance (D̄), point estimate of the deviance
(D̂), estimated effective parameters (pD) and deviance information criterion for the
4 models applied to the monkey performance data.

D̄ D̂ pD DIC

LR AB 1583 1581 2 1585
LR ABC1 1565 1562 3 1569
72 A.C. Smith et al. / Journal of Neur

s not significantly different from baseline, while the three later
timulation-ON periods are associated with a significant increase
n performance.

In Fig. 2B, we plot the estimated probability of a correct response
omputed using the state-space formulation. We show both the
edian (wide red curves) and the 95% credible intervals (lighter

ed curves). In this case the estimated probability is less constrained
nd tracks the data independent of the stimulation-ON/OFF infor-
ation. On average the response curve lies around the 0.75 level

ut decreases are observed at the end of the first stimulation-ON
eriod around trial 375, at the end of the 4th OFF period around
rial 950 and for the remainder of the experiment from trial 1100
nwards.

The several models allow for different levels of detail in assess-
ng the dynamics of behavior. Model LR AB cannot even address

hether there is a stimulation effect, since it attempts to fit the
ata without a stimulation-related covariate. Model LR ABC1 can
ddress whether there is a stimulation effect, but not whether it
iffers across bouts, since it fits all stimulation effects with a single
arameter. Model LR ABC2 can address whether there is a differ-
nce in stimulation effect across bouts (since each bout is associated
ith a different model parameter), but cannot assess the dynamics

t the level of individual trial. Of the models considered, only the
tate-space approach can do the latter.

To see this in more detail, we construct surface plots that com-
are performance between pairs of trials (Figs. 1C and D and
C and D) using the algorithm described in Section 2. Figs. 1C
nd D and 2C and D show a surface representing these proba-
ility values where dark (light) indicates that the performance
n the x-axis is lower (higher) than the performance at the trial
n the y-axis. Dark (light) regions where the probability extends
eyond the 95% credible interval levels are highlighted in red
blue).

Comparison across bouts can be performed for the two mod-
ls that allow for different dynamic effects for each bout, namely,
odel LR ABC2 (Fig. 2A) and the state-space model (Fig. 2B). For

xample, Fig. 2C indicates that the performance in the third ON
eriod is significantly greater than (p > 0.95) the performance in
he first ON period. The results of state-space modeling are some-
hat consistent with this: they indicate that the third ON period is

reater than the end of the first ON period but that also the second
FF, second ON and third OFF are greater than the end of the first
N period.

Thus, the state-space model provides for an even more detailed
nalysis – trial-by-trial comparisons – and reveals that the dynam-
cs are quite complex. In Fig. 2D, there are two strong vertical blue
locks from trials 950 to 1050 and from around trial 1100 to the
nd of the experiment. These correspond to significant drops in
erformance in the last 2 stimulation OFF periods. Another impor-
ant effect in the data is highlighted by the red block around the last
alf of the final ON period (around [x, y] coordinates [1050, 1000]).
his shows that the performance during the final stimulation ON
eriod is significantly higher than the performance at the end of
he OFF period before and at the beginning of this final ON period.
he most surprising feature of the analysis is that the performance
round trial 350 at the end of the ON stimulation period is lower
han the performance of the surrounding trials, as indicated by the
ed horizontal stripe along y = 350. Thus, the binomial test indicates
hat while stimulation ON produces an overall improvement in per-
ormance, this does not preclude the presence of periods when
erformance during stimulation ON is significantly lower than dur-
ng stimulation OFF. This is an important point and may turn out to
ield insight into the dynamics of the behavioral changes produced
y DBS and the underlying physiological mechanisms which may

nclude effects on synaptic efficacy and gene expression (Shirvalkar
t al., 2006).
LR ABC2 1546 1540 6 1552
State-space 1340 1237 102 1443

Numbers are rounded to the nearest integer. pD is computed from D̄ − D̂.

We next consider model selection by examining measures of
model fit. Table 1 shows the Monte Carlo derived estimates of pos-
terior mean of the deviance (D̄), point estimate of the deviance (D̂),
estimated effective parameters (pD) and deviance information cri-
terion for the four models. Based on the likelihood (D̄) and DIC, we
may conclude that the state-space model provides a better model
fit, i.e., a better description of the effects of stimulation, than the LR
approaches. We also note that the model fit improves as the stim-
ulation is added (LR AB to LR ABC1) and as the model allows for
differential effects of the stimulation on the performance (LR ABC1
to LR ABC2).

As a final test of the state-space model, we compared by Monte
Carlo the (multivariate) distribution of the states when the stim-
ulation was ON against the distribution when the stimulation was
OFF. Using the pairwise Monte Carlo comparison method described
above for Figs. 1C and D and 2C and D, we computed the state dur-
ing stimulation ON to be significantly greater than the state during
stimulation OFF with p < 0.002 (based on 6000 Monte Carlo sam-
ples).

In conclusion, the state-space model provides a better model fit
and is able to address more detailed questions than the regression-
based models. It is worth noting that, while the state-space model
allows more flexibility in tracking the data, the results it yields are
largely consistent with the simpler regression models. For exam-
ple, all the models able to account for stimulation effect (LR ABC1,
LR ABC2 and the state-space model) indicate that the stimulation
has a positive influence on the performance, consistent with the
standard binomial test result. Likewise, both LR ABC2 and the state-
space model show that the performance does not improve during
the first stimulation ON period. Overall, however, the state-space
model results highlight an abrupt step-like decline in performance
towards the end of the experiment, around trial 950, which under-
goes a significant increase during the final stimulation period before
a final significant drop to zero.

4.2. Analysis of central thalamic deep brain stimulation in a
human clinical trial

In the second example, the state-space model is applied to a
dataset in which behavior is described by a five-level rating scale.
The raw data obtained on a daily basis during the crossover period
of the clinical trial and described in Section 2 is shown as blue dots
in Figs. 3A and B and 4A and B. Note that on some days observa-
tions were not made and we treat these data as missing at random.
Stimulation was applied during three periods across trials 1–29,
60–87 and 117–151 (shaded regions in Fig. 2A–C). As before, we
first divide the data into observations when stimulation was ON
(n = 55) and observations when stimulation was OFF (n = 52). Com-
parison of the two data sets using the distribution-independent
Kolmogorov–Smirnov (KS) test indicates that they are highly signif-

icantly different (p < 0.0007). We also compare individual ON/OFF
periods using the KS test. Of the 15 possible pairwise compar-
isons, only data from periods 1 and 2 yielded a significant effect
(p < 0.00003, judged at a level of 0.003, the Bonferroni-corrected
criterion corresponding to 0.05).
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Fig. 3. Models applied to human oral feeding data. Raw data is shown as blue filled circles in Panels A and B. Stimulus ON periods are indicated by gray shading. (A and B)
Performance curves (median and 95% credible intervals) for the LR AB and LR ABC1 models respectively. (C and D) Day by day within experiment comparisons for the feeding
performance curves shown in A and B, respectively. Each panel shows a probability surface computed, by comparing by Monte Carlo, the performance curve at a value on the
x-axis with a value on the y-axis. Dark (light) areas indicate that the performance at the trial on the x-axis is lower (higher) than the performance at the trial on the y-axis.
Dark (light) regions were the probability extends beyond the 95% credible interval levels are highlighted in red (blue). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of the article.)

Fig. 4. Models applied to human oral feeding data. Raw data is shown as blue filled circles in Panels A and B. Stimulus ON periods are indicated by gray shading. (A and B)
Performance curves (median and 95% credible intervals) for the LR ABC2 and the state-space models, respectively. (C and D) Day by day within experiment comparisons for
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As for the monkey example, we examine model fit using the
estimated deviance and DIC (Table 2). We conclude from both the
mean deviance D̄ and the DIC that the logistic regression model fit is
improved by the addition of the stimulation parameter, C, and that

Table 2
Computed values of posterior mean of deviance (D̄), point estimate of the deviance
(D̂), estimated effective parameters (pD) and deviance information criterion for the
4 models applied to the human oral feeding data.

D̄ D̂ pD DIC
he feeding performance curves shown in A and B, respectively. Each panel shows a
value on the x-axis with a value on the y-axis. Dark (light) areas indicate that the
n the y-axis. Dark (light) regions were the probability extends beyond the 95% cre
olor in this figure legend, the reader is referred to the web version of the article.)

As for the previous example, the data was initially fitted with
eneralized linear models: without stimulation (LR AB; Fig. 3A),
ssuming uniform stimulation effect (LR ABC1; Fig. 3B) and assum-
ng possibly different stimulation effects (LR ABC2; Fig. 4A). For
hese data there is no evident overall trend. However, the esti-

ate of variable, C, which reflects the effect of the stimulation on
he regression curve in LR ABC1, is significantly larger than zero,
ith mean 0.6352 and 95% credible interval [0.3576, 0.9045]. For LR
BC2, the three parameters C1, C2 and C3 have mean values 0.6804,
.4170 and 0.8547 with 95% credible intervals greater than zero,

ndicating a significant effect of the stimulation on the cognitive
tate during all the stimulation ON periods.

Day to day comparison for LR AB (Fig. 3C) indicates no signifi-
ant trend in the data. For the model with a uniform stimulation
ffect (LR ABC1), the computed probability surface (Fig. 3D) has a
heckerboard-type pattern indicating ON and OFF periods are sig-
ificantly different from one another. Analysis with the LR ABC2
odel suggests that the stimulation effects in the three stimula-

ion bouts are not equally strong. For example, the performance at
he beginning of the second ON period is greater than the perfor-
ance during most of the first OFF period. However, at the end of
he second ON period the performance is not significantly greater
han the performance in the first OFF period.

The state-space model performance plot (Fig. 4B and D) shows
hat the dynamics of the process are more complex. The perfor-
ability surface computed, by comparing by Monte Carlo, the performance curve at
mance at the trial on the x-axis is lower (higher) than the performance at the trial

interval levels are highlighted in red (blue). (For interpretation of the references to

mance during the ON periods tends to be higher than during OFF
periods but with some exceptions. For example, performance in the
2nd ON period is variable: initially slightly higher than the previ-
ous OFF period and, towards the end, lower than the 1st ON period
(Fig. 4D, red block at (65, 45) and blue block at (80, 5), respec-
tively). As the third ON period progresses performance dramatically
improves (Fig. 4D, long vertical red block) and drops off again sig-
nificantly during the final OFF period (Fig. 4D, blue vertical blocks
on right hand side).
LR AB 327 325 2 329
LR ABC1 307 304 3 310
LR ABC2 306 301 5 311
Binomial state-space 263 232 31 294

Numbers are rounded to the nearest integer.
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Table 3
Summary of analysis of all nine data sets with DIC computed by all four models.

Data set DIC Stimulation effect in LR ABC1? Stimulation affects response from SS?

LR AB LR ABC1 LR ABC2 SS

1. Monkey N0123 1585 1569 1552 1443 Positive (p < 0.001) Positive (p < 0.002)
2. Monkey 080709 2369 2258 2088 2037 Negative (p < 0.001) Negative (p < 0.01)
3. Monkey 0806111 1813 1812 1810 1765 None Positive (p < 0.01)
4. Monkey 080724 1643 1641 1637 1648 Positive (p < 0.05) None
5. Monkey 080703 941 937 933 891 Negative (p < 0.01) Negative (p < 0.01)
6.Monkey 080825 1861 1861 1861 1730 N/A—Stimulation intensity varies

between bouts
N/A—Stimulation intensity varies
between bouts

7. Human-oral feeding 329 310 311 294 Positive (p < 0.001) Positive (p < 0.0002)
8. Human limb-moving 217 209 194 168 Positive (p < 0.001) Positive (p < 0.01)
9. Human-arousal 227 222 225 205 Positive (p < 0.004) Positive (p < 0.003)
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he number of stimulation bouts in each data set varies between two and seven. T
here the there were seven stimulation bouts with different intensities. The lowest
hether the estimate of parameter C is significantly different than zero as estima

stimates when stimulation is on are different than the state-space estimates when

he state-space model is a better fit than both. In this case there is
ittle difference between the fits for LR ABC1 and LR ABC2.

This example demonstrates that, while the logistic regression
pproach and the state-space approach both identify a positive
ffect of stimulation, the state-space approach is able to detail its
ynamics. This detail demonstrates that the actual dynamics are
ore complex than postulated in the logistic regression models,

nd that there are differences in the effect of stimulation in the sev-
ral ON/OFF periods. Additionally, the state-space analysis reveals
hat functional oral feeding declines during the second and third
FF periods, beginning approximately two weeks after offset of

timulation. The logistic regression-based analyses could not iden-
ify these changes, since they did not conform to the functional form
f the DBS effects that were incorporated into the model.

As with the monkey data set, we performed a final test of the
tate-space model by comparing by Monte Carlo the (multivariate)
istribution of the states when the stimulation was ON against the
istribution when the stimulation was OFF. The state during the
timulation ON was significantly greater than the state when the
timulation was OFF with p < 0.0002 based on 30,000 Monte Carlo
ample comparisons.

Application of LR ABC1, LR ABC2, and the state-space models all
ndicate that overall the stimulation has a positive effect on oral
eeding performance, consistent with the KS test applied to the
aw data. The state-space model, which provides the best model
t, indicates significant dynamic effects occur within both ON and
FF bouts of stimulation.

.3. Additional analyses

To test the generality of our methods we fit the four models to an
dditional seven data sets (two additional data sets from the same
uman subject and five from a new monkey) summarized in Table 3
long with the two data sets presented above. The human data sets
pan the same cross-over period as the oral feeding data presented
nd therefore contain three bouts of stimulation. The monkey data
ets range from 800 to 1700 trials with between two and eight bouts
f stimulation. As assessed by the DIC the state-space model fit the
ata best in eight out of the nine total cases. For the data set (4),
here the state-space model was not the best fit, the model LR ABC2
as superior, indicating that the almost linear-step-like structure

mposed by that model was better able to describe the data. In addi-
ion to DIC in Table 3, we also show whether the two models LR

BC1 and SS indicate that stimulation has a positive or negative
ffect on the observed response in eight of the nine examples. (In
he example 6, we did not consider this question because stimu-
ation intensity was varied between stimulation bouts resulting in
dose dependent performance effect.) There is general agreement
ulation intensity was the same across all bouts with the exception of data set #6
of DIC for each data set is optimal and indicated in bold. The sixth column indicates
model LR ABC1. The rightmost column indicates whether overall the state-space
lation is off.

between LR ABC1 and SS model conclusions in six cases. In two of
these cases stimulation had a significantly negative effect on the
responses. In the two remaining cases where one model indicated
an effect and the other did not (3 and 4), the model selected based
on lowest DIC indicates a significant positive effect of stimulation.

5. Discussion

We have presented four Bayesian models for the analysis of
behavioral data from two DBS experiments. Our first model was
a simple Bayesian generalized linear (logistic regression) model.
The second two models included effects of the stimulation, assum-
ing, respectively, that the stimulation effects were static and varied
between stimulation periods. The fourth model was a state-space
model. Overall, our results indicated that the final state-space
model was a best fit to 8 out of 9 data sets considered even when the
larger number of parameters used in the state-space formulation is
taken into consideration.

We implemented all four models using the same Markov chain
Monte Carlo software package (WinBugs; Lunn et al., 2000). This
allowed for ease of implementation and model comparison, since
the software automatically computes the DIC. These models could
also be estimated using maximum-likelihood approaches with
varying levels of computational complexity. Models LR AB, ABC1
and ABC2 can easily be computed using available generalized linear
model (logistic regression) estimation software which computes
the maximum-likelihood solution. Estimation of the state-space
model can be made using the Expectation-Maximization algorithm
(Dempster et al., 1977; Smith and Brown, 2003). This approach
requires estimation of the expectation of the posterior distribu-
tion which can be done using the Kalman filter and smoothing
algorithms (Dempster et al., 1977; Nalatore et al., 2009; Smith and
Brown, 2003; Smith et al., 2004, 2005). Even though these methods
may rely on different model assumptions (e.g., Gaussian posterior)
we have found they yield comparable results (Smith et al., 2007).

For each model we compared the estimated performance
between respective experimental data points on a trial-by-trial
(day-by-day) basis for the monkey (human) data sets. This is
straightforward to do using Monte Carlo Markov chain methods and
is theoretically justified since the comparisons take into account
covariance in the model between the trials (or days) being com-
pared. In addition to allowing comparison between trials (or days),
it is also possible to compare blocks of time, such as all the OFF

periods against all the ON periods. In contrast these computations
would require lengthy calculation of the covariance matrix in the
typical non-Bayesian logistic regression framework. This approach
allowed us to ask both global questions (e.g., did the stimulation
have an overall effect on performance?) often answered by off-the-
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helf statistical techniques and more detailed questions about local
ime effects.

It is instructive at this point to consider the implications of the
odel selection (DIC) results. For the majority of data sets, the state-

pace model (which had very few assumptions about the structure
f the data) was assessed to be the best fit. Because of this generality,
he estimated 95% credible intervals are broader than those for the
R models, resulting in more conservative estimates of the overall
ffect of stimulation. Nevertheless, within their common domain of
pplicability (i.e., whether there was an effect of stimulation), the
wo approaches lead to similar conclusions.

An important advantage of the LR ABC2 and state-space models
s that these models do not make the assumption that all the stim-
lation effects are the same. This makes it possible to assess effects
n behavior produced by varying stimulation duration or changing
lectrode placement and current intensity over the course of the
xperiment.

As reviewed below, current knowledge of the effects of DBS sug-
ests that the behavioral response will have complex dynamics. We
mphasize that the goal of the state-space approach is to measure
he behavioral response with unknown dynamics; it is not intended
o be interpreted as a mechanistic account of them. Specifically, the
tate-space approach rigorously distinguishes between chance fluc-
uations in performance that occur even when the probabilities of
he behavioral outcomes are constant, and fluctuations in perfor-

ance that are due to changes in the underlying probabilities of the
ehaviors.

There are many reasons that these underlying probabilities in
ur application may have complex dynamics. At the level of phys-

ologic mechanism, the central lateral nucleus of the thalamus is
ositioned to play a key role in arousal regulation (reviewed in
chiff, 2008). Arousal regulation during behavioral performance
epends importantly on descending inputs to both the central
halamus and the brainstem/basal forebrain arousal systems origi-
ating from medial frontal cortical systems (Nagai et al., 2004; Paus
t al., 1997). These medial frontal cortical regions and the stria-
um are the among the primary targets for activation with central
halamic DBS (Schiff and Purpura, 2002) and effective stimulation
ontacts show activation of medial frontal regions with central tha-
amic DBS in human studies (Schiff et al., 2007). We anticipate
hat continuous DBS in the central lateral nucleus may maintain
level of depolarization of neurons in cortical and striatal targets

hat resists a variety of sources of reduction of excitation within
hese structures as performance wears on (for example increasing
atiety reducing motivational signals, or boredom reducing atten-
ional effort). We interpret the observed effects of DBS in both the

onkey and human datasets analyzed above under the same physi-
logical model. The additional depolarization of cortical and striatal
eurons may assist weak signaling as performance degrades (or
emain poor due to underlying brain injuries), shifting the inter-
al arousal state to a level which has a higher probability for the
ompletion of the behaviors. As this signal is not informative for
he tasks and its effect is expected to be limited to adjustment of
he background state, a variety of complex internal dynamics will
ontinue to impact the likelihood of correct performance.

Electrical stimulation of the central thalamus is among the most
ecent applications of DBS for the treatment of human brain disor-
ers (reviewed in Schiff and Fins, 2007). DBS has a long antecedent
istory beginning with experimental studies of the ‘ascending retic-
lar activating system’ (Moruzzi and Magoun, 1949) and earlier
xperimental demonstrations of behavioral facilitation in monkeys

Fuster, 1958; Fuster and Uyeda, 1962; Stamm and Rosen, 1972).
uantization of effects in earlier studies relied on measurement
f reaction times and percentages of correct trial performance
sing parametric explorations of current intensity at different sites
f stimulation. In these studies, the loss of facilitatory effects on
ce Methods 183 (2009) 267–276 275

performance correlated with visible behavioral changes (twitches,
head turning, etc.) that likely reflected spreading of electrical cur-
rent into adjacent neuronal populations. The methods presented
here would allow on-line, continuous and detailed assessment of
the impact of current stimulation parameters on performance. For
the 6-month human trial data, real-time (i.e., daily) assessment
of performance is possible since the model estimation takes less
than 10 min on 2.39 GHz desktop computer. For the longer binary
data sets, CPU time is close to 40 min, precluding continuous anal-
ysis during a typical 2 h session, but still allowing analysis on
a day-to-day basis. For continuous real-time analysis, one might
in future consider using faster methods such as the Expectation-
Maximization algorithm (Smith and Brown, 2003), particle filtering
(Ergun et al., 2007) or stochastic point process filters (Eden et
al., 2004). These methods offer a powerful strategy to select peri-
ods of behavioral facilitation for evaluation of physiological data
obtained during effective stimulation for comparison against peri-
ods of either ineffective stimulation or when the stimulator is OFF.

The effects produced by DBS will change as stimulation param-
eters are varied. However, as demonstrated in both clinical and
experimental studies the same set of stimulation parameters may
produce different behavioral effects over time adding another
important dynamical component that must tracked over the course
of DBS application. The initial design of the human clinical trial
of central thalamic DBS anticipated that the effects of DBS would
be rapidly reversible, making a cross-over design ideal (Schiff et
al., 2007). But, cross-over studies made over the course of days
and months may be influenced by long and short-term carry-over
effects. In the human trial, if the effects of DBS had been completely
irreversible, achieving maximum effect after just a short period of
stimulation without decay, the crossover design would have been
completely misleading and falsely negative due to long and short-
term carry-over effects. The intermediate result obtained with
evidence of decay recommends further use of cross-over designs
but with the added caution that statistical tools be available to iden-
tify and quantify carry-over effects that may endure. Rodent studies
of central thalamic DBS also show both acute dynamic effects and
slower carry-over effects, with a persistence of DBS effects after
discontinuation of stimulation (Shirvalkar et al., 2006). For central
thalamic stimulation which demonstrates these effects, and acts
on a main route of neocortical activation associated with attention,
learning and memory, it is anticipated that a mix of time courses of
response to DBS will be typical and will require new methodologies
as presented here to quantitatively assess the causal relationships
of DBS and behavioral changes over multiple timescales. Simi-
larly, human trials of DBS in neuropsychiatric disorders such as
depression and obsessive compulsive disorder have also identified
multiple acute and subacute effects of DBS (Mayberg et al., 2005).
Having the ability to precisely measure the evolving dynamics of
treatment may provide important further insight into mechanisms
underlying treatment with DBS.

In animal experiments, state changes may also effect brief peri-
ods of DBS testing as an anticipated decline in performance may
mix effects of DBS with waning vigilance, motivation, increasing
boredom and fatigue (as seen above). The methods shown here can
be used to model these conditions. Moreover, if behavioral facili-
tation is observed acutely in animal experiments it may presage a
shifting of baseline performance over days, weeks, and, in the case
of non-human primate experiments, months, of continued expo-
sure to stimulation in effective sites. The methods described here
would allow for carefully assessing these possibilities and incor-

porating this important information into the interpretation of DBS
results. Precise tracking of the dynamics of quantitative measure-
ments of behavior of will be of particular importance in linking
these observations to quantitative physiological measurements in
experimental studies of the underlying mechanisms of DBS effects.
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stimulation in Parkinson’s disease. Movement Disorders 2006;21:S284–9.
76 A.C. Smith et al. / Journal of Neur

More generally, it may be possible to develop improved gen-
ralized linear (or other) models by incorporating covariates that
epresent additional features revealed by state-space analyses. Such
ovariates (e.g., a ramp up of performance during simulation, or an
nteraction of DBS effects and waning vigilance) may give a better

odel fit and more precise credible intervals.
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